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Abstract

It is well known that three momentum wheel actuators can be used to control the attitude

of a rigid spacecraft and that arbitrary reorientation maneuvers of the spacecraft can be

accomplished using smooth feedback, ff failure of one of the momentum wheel actuators

occurs, we demonstrate that two momentum wheel actuators can be used to control the atti-

tude of a rigid spacecraft and that arbitrary reorientation maneuvers of the spacecraft can be

accomplished. Although the complete spacecraft equations are not controllable, the spacecraft

equations are small time locally controllable in a reduced nonlinear sense. The reduced

spacecraft dynamics cannot be asymptotically stabilized to any equilibrium attitude using a

time-invariant continuous feedback control law, but discontinuous feedback control strategies

are constructed which stabilize any equilibrium attitude of the spacecraft in finite time. Conse-

quently, re.orientation of the spacecraft can be accomplished using discontinuous feedback

control.

* Please send all correspondence to Professor N. Harris McClamroch, Department of
Aerospace Enginoering, University of Michigan, Ann Arbor, MI 48109-2140.
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1. Introduction

We consider the attitude control of a spacecraft modeled as a rigid body. It is well

known that three actuators, either gas jets or momentum wheels, can be used to control the

attitude of a rigid spacecraft and that arbitrary reorientation maneuvers of the spacecraft can

be accomplished using smooth feedback t-7. If failure of one of the actuators occurs, then one

is left with only two actuators. In this paper, the attitude stabilization problem of a rigid

spacecraft using only two control torques supplied by momentum wheel actuators is con-

sidered. Since we are considering a space-based system, the problem considered here, namely,

the attitude stabilization of a spacecraft operating in an actuator failure mode, is an important

control problem. It is assumed that the center of mass of the system consisting of the space-

craft and the momentum wheel actuators is fixed in space.

Attitude stabilization of a rigid spacecraft using two momentum wheel actuators is not a

mature subject in the literature. Controllability results for a rigid spacecraft controlled by

momentum wheel actuators are presented in Ref. 8. We mention that most of the previous

researchers have considered the problem of controlling a rigid spacecraft using two gas jet

actuators 8-22. Attitude stabilization of a rigid spacecraft using two gas jet actuators is con-

sidered in Refs. 8-13. Refs. 14-22 consider only the stabilization of the angular velocity

equations of a rigid spacecraft using two gas jet actuators.

We consider the attitude stabilization of a spacecraft using control torques supplied by

two momentum wheel actuators about axes spanning a two dimensional plane orthogonal to a

principal axis of the spacecraft. The linearization of the complete spacecraft dynamic equa-

tions at any equilibrium attitude has an uncontrollable eigenvalue at the origin. Consequently,

controllability and stabilizability properties of the spacecraft cannot be inferred using classical

linearizadon ideas. The complete spacecraft dynamics is, in fact, not controllable. Under a

rather weak assumption, the spacecraft dynamics is small time locally controUabte at any

equilibrium attitude in a reduced nonlinear sense. The reduced spacecraft dynamics cannot be

asymptotically stabilized to any equilibrium attitude using time-invariant continuous feedback.

Nevertheless, two different discontinuous feedback control strategies are constructed which

achieves reorientation of the spacecraft in finite time. Using the concept of geometric phase 23,

a discontinuous feedback control strategy is presented based on the nonholonomic control

theory in Ref. 24. An alternate discontinuous feedback control strategy, based on the fact that

rigid body rotations do not commute, is also presented.
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This paperis based on our ealier work presented in Ref. 10 and is a companion to Ref.

11 and Ref. 12, which treat the attitude stabilization of a rigid spacecraft using two gas jet

ac tuators.

2. Kinematic and Dynamic Equations

The orientation of a rigid spacecraft can be specified using various parametrizations of

the special orthogonal group SO(3). Here we use the Z-Y-X Euler angle convention for

parametrizing the orientation of the rigid spacecraft zS. The corresponding rotation matrix is

denoted as R (V, 0,, _), where V, 0, _ are the Euler angles. We assume that the Euler angles

are limited to the ranges -g < V < 7r, -g/2 < 0 < rd2, -g < _ < g. Suppose _l, ¢._, % are

the principal axis components of the absolute angular velocity vector c0 of the spacecraft.

Then we have _

(_ = (01 + t.02sint _ tan0 + O3cos_ tanO,

6 = o_cosO - t.03sin_,

= C02sin _ sec0 + c03cos_ sec0.

(2.1)

(2.2)

(2.3)

Next we consider the dynamic equations which describe the evolution of the angular

velocity components of the spacecraft. Consider two momentum wheel actuators spinning

about axes defined by unit vectors b 1, b2 fixed in the spacecraft such that the center of mass

of the i-th wheel lies on the axis defined by b i , and a control torque - if/ is supplied to the

i-th wheel about the axis defined by b i by a motor fixed in the spacecraft. Consequently, an

equal and opposite torque if/ is exerted by the wheel on the spacecraft. We assume that b i

defines a principal axis for the i-th wheel which is symmetric about b i. Further b 1 and b 2

span a two dimensional plane which is orthogonal to a principal axis of the spacecraft and,

without loss of generality, b i are assumed to be of the form

bi = (bil, bi2, 0) T, i = 1, 2. (2.4)

The mass of spacecraft, wheel 1 and wheel 2 are denoted as m 1, m 2 and m 3 respectively,

and Pl, P2, 193 denote the position vectors of the center of mass of the spacecraft, wheel 1 and

wheel 2 respectively with respect to the center of mass of the whole system. Thus from the

location of the wheels

P2 = Pl + dlbl, (2.5)
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P3 = pl + d262 '

where d I, d 2 are constants.

3

ZmiOi = O,

i=1

Since, by the definition of center of mass,

(2.6)

(2.7)

further manipulation of equations (2.5)-(2.7) gives expressions for Pl, P2 and P3 which we

denote as Pi = (ci 1, ci2, 0) T , i = 1, 2, 3. The total angular momentum vector of the system is

given, in the spacecraft body flame, by

R (_, 0, _b_H = J co + v, (2.8)

3 3
J = [I 1 + ]_ffi + Y'_(li - Ii )], (2.9)

i=1

ci22

_ = m i ---CilCi2

0

, i = 1, 2, 3, (2.10)

(2.11)

(2.12)

(2.13)

and wheel 2 respec-

where

1__2 = blbTljl,

b T; ,I__3= b2 2.12

i=2

-C ici21¢i 22 _ 21

0 ci 1+ci

V =/_.2(00 + b 1(_1) +/3(02 + b2(_2),

where I l, 12, and 13 denote the inertia tensors of the spacecraft, wheel 1

tively, j 1 is the moment of inertia of wheel 1 about the axis defined by b 1, J2 is the moment

of inertia of wheel 2 about the axis defined by b2, and 0 l, 0 2 are the angles of rotation of

wheel 1 and wheel 2 about the axes defined by b I and b 2 respectively. Here H denotes the

angular momentum vector of the system expressed in the inertial coordinate frame. The angu-

lar momentum vector H is a constant since there is no external moment about the center of

mass of the system. Suppose ffl and if2 are the control torques; then

t; = - (blff 1 + b2ff2). (2.14)

Differentiating (2.8) with respect to time we obtain

J(_o = S(02)R(_, O, ¢_)H + blff I + b2ff 2, (2.15)

where
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s (co) = 0

-- CO1

Note that

I1 = diag(lll, I12, I13),

12 = block diag(I21,122 ),

13 = block diag(131, I32),

where 121, 131 are invertible 2 x 2 matrices, 111,112, 113, 122., 132 are nonzero real numbers

and therefore J is a positive definite matrix of the form

J = block diag (Jr, J2), (2.16)

where Jt is an invertible 2 x 2 matrix and J2 is a nonzero real number.

3. Controllability and Stabilizability Properties

In this section we consider the controllability and stabilizablity properties of the space-

craft dynamics controlled by two momentum wheel actuators. Define

U J?lt.bl2 b22 ] ff
J

From Section 2 the complete spacecraft dynamics can be rewritten as

E Ii:]Ji -1 0(Zxl

_0 = 0(1x2) j_-t j S(°_)R(v, 0, ¢p)H + , (3.1)

= 01 + o_sin0 tan0 + o>3cos0 tan0, (3.2)

6 = o_cosO - or3sinO, (3.3)

V = o_sinO sec0 + o3cos_p see0, (3.4)

where H is a constant vector.

The linearization of the complete spacecraft dynamic equations (3.1)-(3.4) at any equili-

brium attitude has an uncontrollable eigenvalue at the origin. Consequently, the controllability
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and stabilizability properties of the complete spacecraft dynamics cannot be inferred using

classical linearization ideas. However, from equations (2.4), (2.11)-(2.13) and the definition

c = (0, 0, 1)r, (3.5)

we have cTv = 0. Therefore from equation (2.8) we have

cT R (_, O, _)H = cT J co. (3.6)

Since H is a constant vector, this equation represents a constraint on the motion of the space-

craft irrespective of the controls applied. Thus the complete spacecraft dynamics is not com-

pletely controllablo,. Therefore we ask the following question: what restricted control and sta-

bilization properties of the spacecraft can be demonstrated in this case? Our analysis begins

by demonstrating that, under an appropriate restriction of interest, the spacecraft equations

have restricted controllability and stabilizability properties.

Consider equations (3.1)-(3.4) and suppose the angular momentum vector H of the sys-

tem is zero. From equations (2.16), (3.5) and (3.6) it follows that the angular velocity com-

ponent of the spacecraft about the uncontrolled principal axis is identically zero, i.e., co3 = 0.

Under such a restriction, the reduced spacecraft dynamics are described by

cb1 = u t, (3.7)

_2 = u2, (3.8)

= c01 + ahsin _ tan0, (3.9)

= 0_2cos ¢, (3.10)

= _2sint_ sec0. (3.11)

Notice that the linearization of the equations (3.7)-(3.11) at any equilibrium has an uncontroll-

able eigenvalue at the origin. Therefore analysis of the controllability and stabilizability pro-

perties of the reduced spacecraft dynamics requires inherently nonlinear techniques. The fol-

lowing results follow directly based on an analysis similar to that in Ref. 24.

Theorem 3.1: The reduced dynamics of a spacecraft controlled by two momentum wheel

actuators as described by equations (3.7)-(3.11) are small time locally controllable at any

equilibrium

Theorem 3.2: The reduced dynamics of a spacecraft controlled by two momentum wheel

actuators as described by equations (3.7)-(3.11) cannot be asymptotically stabilized to any
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equilibrium using a time-invariant continuous feedback control law, but the reduced dynamics

can be asymptotically stabilized to any equilibrium using a piecewise continuous feedback

control law.

Theorem 3.1 follows from the fact that a sufficient condition for small time local control-

lability given in Ref. 26 is satisfied by the equations (3.7)-(3.11). The fu'st part of Theorem

3.2 follows from the fact that a necessary condition for the existence of a time-invariant con-

tinuous feedback control law given in Ref. 17 is not satisfied by equations (3.7)-(3.11); the

second part is a consequence of small time local controllability 26. The implications of the

properties stated above are as follows. Suppose the angular momentum vector H is zero.

Then the spacecraft controlled by two momentum wheel actuators can be controlled to any

equilibrium attitude but the feedback control law must necessarily be discontinuous. Thus

arbitrary reorientation of the spacecraft can be achieved under the restriction H = 0; If H _ 0,

equation (3.6) implies that reorientation of the spacecraft to an equilibrium attitude cannot be

achieved.

4. Feedback Stabilization Algorithms

We restrict our study to the class of discontinuous feedback controllers in order to asymptoti-

cally stabilize the reduced spacecraft dynamics described by state equations (3.7)-(3.11).

Clearly, traditional nonlinear control design methods are of no use since there is no general

procedure for the design of a discontinuous feedback control. However, an algorithm generat-

ing a discontinuous feedback control which asymptotically stabilizes an equilibrium can be

constructed, as suggested by the controllability properties of the system. Without loss of gen-

erality, we assume that the equilibrium to be stabilized is the origin. We present two different

discontinuous control strategies which stabilize the origin of equations (3.7)-(3.11) in finite

time.

4.1. Feedback stabilization based on nonholonomic control theory

Consider a diffeomorphism defined by

Y l = cos_ ln(sec0 + tan0) + _sin_,

Y2 = ¢x_2sec0 - Y,tYs,

Y3=_,

(4.1)

(4.2)

(4.3)
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Y4 =col + ohsinO tan&

Y5 = sins ln(secO +tanO) - VcosS,

If we now define the feedback relations

(1 - y 5sinSsinO)"

YscosO

(4.4)

(4.5)

(4.6)

then the reduced spacecraft dynamics (3.7)-(3.11) are described in the new variables by the

normal form equations

3)1 =Y2,

3)2 = Vl,

3)3 =Y4,

))4 = V2,

3)5 = YaYl.

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

From equations (4.1)-(4.5), notice that oh = orz = S = 0 = V = 0 implies that Yl = Y2 = Y3 =

Y4 = Y5 = 0. Hence asymptotic stabilization of equations (3.7)-(3.11) to the origin is

equivalent to asymptotic stabilization of the normal form equations (4.7)-(4.11) to the origin;

hence we consider asymptotic stabilization of the normal form equations. The normal form

equations (4.7)-(4.11) are in a familiar form which has been studied in Ref. 24 and therefore

can be stabilized by the following discontinuous control strategy.

• First, transfer the initial state of the normal form equations (4.7)-(4.11) to the equilibrium

state (0, 0, 0, 0, y_ ), for some yl, in finite time.

• Next, traverse a closed path 7 in the fYl, Y3) space in finite time, where the path 3' is

selected to satisfy

-y_ = I.t y ldY3; (4.12)

this transfers the state (0, 0, 0, 0, y_ ) to the origin in finite time.
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Here we consider a rectangular path T in the (y 1, Y3) space formed by line segments from

(0, 0) to (y_, 0), from (Yl, 0)to (y_, y_), from (y_,y_) to (0, y_), and from (0, y_)to

(0, 0). For such a path, the line integral in equation (4.12) can be explicitly evaluated as Y l*Y_

so that equation (4.12) becomes

_ yt = YlY;, (4.13)

and the parameters y_ and y_ specifying the particular rectangular path are chosen to satisfy

the above equation.

Throughout, assume k > 0, and define

xzlx21

if {xl + 2k > 0} or

x21x21

{xt + 2k - 0 and x 2 > 0}

x21x21

if {x l+ 2k <0} or

x21x2 I
{x 1 + 2k

k

G (x t, x2) = -k

0

=0 and X2<0 }

if {x t=0 and x 2=0}

We use the well-known property that any initial state of the system

.lf I =X 2,

22 = - G(Xl -$I, x2),

is transferred to the final state (x't, 0) in a finite time.

We now present a specific feedback control algorithm which stabilizes the spacecraft to

the origin in finite time; this feedback control algorithm implements the approach just

described.

Maneuver 1: Apply

Vl = - G(Yl, Y2) ,

v2 = - G (Y3, Y4),

until 0' 1, Y2, Y3, Y4, YS) = (0, 0, 0, 0, y_ ) where y5 t is arbitrary; then go to Maneuver 2.
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Maneuver 2: If y_ > 0, choose y_ = - y; = a]-@ ); else choose y_ = y; = (%_-y_); Apply

y9,

v2 = - G (Y3,Y4) ,

until(Yl,Y2, Y3, )'4,Y5) = (,Y_,0, 0, 0,yl );then go to Maneuver 3.

Maneuver 3: Apply

Vl =-G(Yl-Yl,Y2) ,

v2 =- G_3-Y3,Y4) •

until(.Yl,Y2, Y3, Y4, Y5) = (Y_, 0,y;, 0, 0); then go to Maneuver 4.

Maneuver 4: Apply

vl =- G(Yl, Y2),

v2 = - G(Y3 - Y3, Y4) ,

until (y 1, Y2, Y3, Y4, Y5) = (0, 0, y_, 0, 0); then go to Maneuver 5.

Maneuver 5: Apply

Vl = - G(Yl, Y2) ,

v 2 = - G (Y3, Y4) ,

until (y 1, Y2, Y3, Y4, Y5) = (0, 0, 0, 0, 0); then go to Maneuver 2.

It can be verified that the execution of Maneuver 1 transfers the initial state of the nor-

real form equations to the equilibrium state (0, 0, 0, 0, y_ ), for some y_, in finite time_ Sub-

sequent execution of Maneuvers 2 through 5 then transfers the state (0, 0, 0, 0, y _ ) to the ori-

gin in finite time. This control algorithm is nonclassical and involves switching between vari-

ous feedback functions. Justification that it stabilizes the origin of the normal form equations

(4.7)-(4.11) in finite time follows as a consequence of the construction procedure. Since stabil-

ization of the normal form equations to the origin is equivalent to stabilization of the state

equations (3.7)-(3.11) to the origin, we conclude that the control inputs u I and u 2 given by

equation (4.6) with v 1 and v 2 defined by the above control algorithna stabilizes the reduced

spacecraft dynamics described by equations (3.7)-(3.11) to the equilibrium (co l, c02, _, 0, W) =

(0, 0, 0, 0, 0) in finite time. A computer implementation of the feedback control strategy can

be easily carried out.
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4.2. Feedback stabilization based on rigid body rotational characteristics

We now present an alternate discontinuous feedback control strategy for stabilizing the

origin of equations (3.7)-(3.11) in finite time. This strategy requires that the spacecraft

undergo a sequence of specified maneuvers and is based on the fact that rigid body rotations

do not commute. The physical interpretation of the sequence of maneuvers that transfers any

initial state of equation (3.7)-(3.11) to the origin is as follows.

• Transfer the initial state of equations (3.7)-(3.11) to any equilibrium state in finite time;

i.e. bring the spacecraft to rest.

• Transfer the r_sulting state to an equilibrium state where ¢ = 0 in finite time; i.e. so that

the spacecraft is at rest with ¢ = 0.

• Transfer the resulting state to an equilibrium state where _ = 0, 0 = 0 in finite time; i.e.

so that the spacecraft is at rest with _ = 0, 0 = 0.

• Transfer the resulting state to an equilibrium state where ¢ = _--- 0 = 0 in finite time; i.e.
2'

so that the spacecraft is at rest with _ = _-- 0 = 0.
2'

• Transfer the resulting state to the equilibrium state (0, 0, _ 0, 0) in finite time.
2'

• Transfer the equilibrium state (0, 0, _-- 0, 0) to the equilibrium state (0, 0, 0, 0, 0) in
2'

finite time.

We now present a feedback control algorithm which stabilizes the spacecraft to the origin in

finite time; this feedback control algorithm implements the approach just described.

Maneuver 1. Apply

Ul = -ksignc° 1,

u 2 = - k signo_,

until (co 1, o_ = (0, 0); then go to Maneuver 2.

Maneuver 2: Apply

u, = - G(_, oh),

u2=O,
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until (co l, c02, _) = (0, 0, 0); then go to Maneuver 3.

Manuever 3: Apply

UI=0,

u2 = - G (0, co2),

until (col, co2, t_, 0) = (0, 0, 0, 0); then go to Maneuver 4.

Maneuver 4: Apply

7_

ut = - - 5-' col),

U2=0,

until (col, °>2, ¢_, 0) = (0, 0, _-- 0), then go to Maneuver 5.
2'

Maneuver 5: Apply

Ul=0,

u 2 = - G(V, co2) ,

until (col, c°2, _, 0, gt) = (0, 0, _-- 0, 0); then go to Maneuver 6.
2'

Maneuver 6: Apply

/'/l ------ G(_, col) ,

u2=0,

until (col, c°2, _, 0, _) = (0, 0, 0, 0, 0, 0); then go to Maneuver 1.

It can be verified that the execution of Maneuver 1 transfers the initial state of equations

(3.7)-(3.11) to the equilibrium state (0, 0, t) 1, 0 l, _1), for some t_1, 0 t, _l, in finite time. Exe-

cution of Manuever 2 then transfers the state (0, 0, 01, 0 l, gt 1) to the state (0, 0, 0, 0 t, _1);

execution of Manuever 3 then transfers the state (0, 0, 0, 0 l, gt 1) to the state (0, 0, 0, 0, Wt);

execution of Manuever 4 then transfers the state (0, 0, 0, 0, W 1) to the state (0, 0, _-- 0, gtl);
2'

execution of Manuever 5 then transfers the state (0, 0, 2' 0, Xltl) to the state (0, 0, _2, 0, 0);

execution of Manuever 6 transfers the state (0, 0, 2' 0, 0) to the state (0, 0, 0, 0, 0).finally,

This strategy is discontinuous and nonclassical in nature. A computer implementation of the



-13-

feedback control strategy can be easily carried out.

4.3 Comments

We have introduced two different control laws which transfer any initial state of equa-

tions (3.7)-(3.11) to the origin in finite time. Each of these control laws is in feedback form,

since the control values depend on the current state; and each control law is discontinuous.

The first construction proc_ure makes use of the nonholonomic features of the reduced

spacecraft dynamics, while the second construction procedure uses physical insight about rigid

body rotations. Tile first control law constructed makes use of both control actuators simul-

taneously, while the second control law (after Maneuver 1) uses only a single actuator at a

t/me. The two discontinuous feedback control laws exhibited arc illustrations of the class of

control laws which asymptotically stabilize equations (3.7)-(3.11) to the origin. There are

other maneuver sequences, and corresponding feedback control laws, which will also achieve

the desired attitude stabilization of the spacecraft. But each such strategy is necessarily

discontinuous.

One of the advantages of the development in Sections 4.1 and 4.2 is that feedback con-

trol strategies are constructed which guarantee attitude stabilization in a finite time. The total

time required to complete the spacecraft re.orientation is the sum of the times required to com-

plete the sequence of maneuvers described. It should be clear that the time required to com-

plete each maneuver depends on the single positive parameter t in the corresponding control

law. There is a trade off between the required control levels, determined by the selection of/c,

and the resulting times to complete each of the maneuvers and hence the total time required to

reorient the spacecraft In particular, the time to reorient the spacecraft from a given initial

state to the origin can be expressed as a function of the value of the parameter k and of the

initial state.

We have demonstrated, by construction, the closed loop properties for the special feed-

back control strategies presented. Our analysis was based on an ideal model assumption.

Further robustness analysis is required to determine effects of model uncertainities and exter-

nal disturbances. Unfortunately, such robustness analysis is quite difficult since the closed

loop vector fields arc necessarily discontinuous. Perhaps, feedback control strategies which

stabilize the spacecraft attitude, different from ones presented in this paper, would provide

improved closed loop robustness. These issues are to be studied in future research.
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5. Simulation

We illustrate the results of the paper using an example. Consider a rigid spacecraft with

no control torque about the third principal axis and two control torques, generated by momen-

tum wheel actuators, are applied about the other two principal axes. Therefore the vectors b 1

and b 2 are given by b I = (1, 0, 0) T, b 2 = (0, 1, 0) T. For our simulation, we use the space-

craft parameters used in Ref. 2. The mass of the spacecraft, m 1, is 500 Kg, and the masses of

the momentum wheels, m 2 and m 3, are each 5 Kg. The center of mass of the momentum

wheels are located at a distance 0.2 m from the center of mass of the spacecraft, i.e., d t = d 2

= 0.2 m. The moment of inertia of the wheels about its axis of rotation is 0.5 Kg.m 2, i.e.,

Jl = J2 = 0.5. The inertia tensor of the spacecraft and the two momentum wheels are

I t = diag (86.215, 85.07, 113.565) Kg.m 2 ,

12 = diag (0.5, 0.25, 0.25) Kg.m 2 ,

13 = diag (0.25, 0.5, 0.25) Kg.m 2 .

Using these parameters, the inertia matrix J can be calculated which equals

J = diag(86.7, 85.5, 114.5) Kg.m 2 ,

approximately. The complete dynamics of the spacecraft system defined by equations (3.1)-

(3.4) is not controllable, but we consider the restriction that the angular momentum vector

H = 0. Consequently, we are interested in stabilizing the reduced spacecraft dynamics

described by equations (3.7)-(3.11) to the equilibrium (tol, c°2, _, 0, _) = (0, 0, 0, 0, 0).

The spacecraft is initially at rest (i.e., to o = too = 0) with an initial orientation given by the

Euler angles _0 = g, 00 = 0.25g and _/0 = _ 0.5_.

First, a computer implementation of the feedback control algorithm specified in Section

4.1 was used to stabilize the spacecraft to the origin. The value of the gain k was chosen as

1. The time responses of the Euler angles, angular velocities and the control torques are

shown in Fig. 1, Fig. 2 and Fig. 3 respectively. After a total maneuver time of 11.77 seconds,

tol = _ = _ = 0 = V = 0. Next, a computer implementation of the feedback control algo-

rithm specified in Section 4.2 was used to stabilize the spacecraft to the origin. The value of

the gain k was chosen as 1. The time responses of the Euler angles, angular velocities and

the control torques are shown in Fig. 4, Fig. 5 and Fig. 6 respectively. After a total maneuver

time of 13 seconds, to1 = to2 = _ = 0 = _ = 0.
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6. Conclusion

The attitudestabilizationproblem of a spacecraftusing control torques supplied by two

momentum wheel actuators about axes spanning a two dimensional plane orthogonal to a prin-

cipal axis has bean considered. The complete spacecraft dynamics arc not controllable. How-

ever, the spacecraftdynamics are small time locally controllablein a reduced sense.The

reduced spacecraftdynamics cannot bc asymptoticallystabilizedusing time-invariantcontinu-

ous feedback, but discontinuous feedback control strategieshave been constructedwhich sta-

bilizesthe spacecraft (in the reduced sense) to an equilibrium attitude in finite time. The

results of the paper show that although classical nonlinear control techniques do not apply, it

is possible to construct control laws based on the particular spacecraft dynamics.
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